Assessing Uncertainties of Theoretical Atomic Transition Probabilities with Monte Carlo Random Trials
نویسنده
چکیده
This paper suggests a method of evaluation of uncertainties in calculated transition probabilities by randomly varying parameters of an atomic code and comparing the results. A control code has been written to randomly vary the input parameters with a normal statistical distribution around initial values with a certain standard deviation. For this particular implementation, Cowan's suite of atomic codes (R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley, CA: University of California Press, 1981) was used to calculate radiative rates of magnetic-dipole and electric-quadrupole transitions within the ground configuration of titanium-like iron, Fe V. The Slater parameters used in the calculations were adjusted to fit experimental energy levels with Cowan's least-squares fitting program, RCE. The standard deviations of the fitted parameters were used as input of the control code providing the distribution widths of random trials for these parameters. Propagation of errors through the matrix diagonalization and summation of basis state expansions leads to significant variations in the resulting transition rates. These variations vastly differ in their magnitude for different transitions, depending on their sensitivity to errors in parameters. With this method, the rate uncertainty can be individually assessed for each calculated transition.
منابع مشابه
Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System
We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...
متن کاملMonte Carlo Comparison of Approximate Tolerance Intervals for the Poisson Distribution
The problem of finding tolerance intervals receives very much attention of researchers and are widely used in various statistical fields, including biometry, economics, reliability analysis and quality control. Tolerance interval is a random interval that covers a specified proportion of the population with a specified confidence level. In this paper, we compare approximate tolerance interva...
متن کاملAnomalous Shock Displacement Probabilities for a Perturbed Scalar Conservation Law
We consider an one-dimensional conservation law with random space-time forcing and calculate using large deviations the exponentially small probabilities of anomalous shock profile displacements. Under suitable hypotheses on the spatial support and structure of random forces, we analyze the scaling behavior of the rate function, which is the exponential decay rate of the displacement probabilit...
متن کاملApplying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملStochastic Completion Field with Probabilistic Transition
The report is to present a new simple method of using the probabilistic transition to evaluate the stochastic completion field. It is found that by quantizing the imaging plane according to the actual line-up of the image pixels, the stochastic completion field with random walks can be well characterized by the transition probabilities. Those transition probabilities can be calculated from eith...
متن کامل